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ABSTRACT

This report presents the results of analysis of cockpit lateral control feel-system studies. Variations
in feel-system natural frequency, damping, and command sensing reference (force and position) were
investigated, in combination with variations in the aircraft response characteristics. The primary data
for the report were obtained from a flight investigation conducted with a variable-stability airplane,
with additional information taken from other flight experiments and ground-based simulations for both
airplanes and helicopters. The study consisted of analysis of handling qualities ratings and extraction of
open-loop, pilot-vehicle describing functions from sum-of-sines tracking data, including, for a limited
subset of these data, the development of pilot models. The study confirms the findings of other investiga-
tors that the effects on pilot opinion of cockpit feel-system dynamics are not equivalent to a comparable
level of added time delay. The effects on handling qualities ratings are, however, very similar to those
of time delay, and until a more comprehensive set of criteria are developed, it is recommended that
feel-system dynamics be considered a delay-inducing element in the aircraft response. The best correla-
tion with time-delay requirements was found when the feel-system dynamics were included in the delay
measurement, regardless of the command reference. This is a radical departure from past approaches.

NOMENCLATURE

Acronyms

HQR handling qualities rating

HUD head-up display

LATHOS lateral high-order systems

PIO pilot-induced oscillation

rms root mean square, deg

SOS sum of sines

STI Systems Technology, Inc., Hawthorne, California
Symbols

A; forcing function input amplitude, deg

b stick damping, 1b-sec/in.

F stick force, 1b

I stick inertia, slug-’ft2

spring gradient, 1b/in.
Tr roll mode time constant, sec
T stick position, in.

CFS feel system damping ratio



TR roll mode time constant, sec (used in figures only)

wWEg feel system natural frequency, rad/sec
w; forcing function input frequency, rad/sec
INTRODUCTION
Background

An in-flight research effort investigating various aspects of lateral handling qualities was conducted
by Calspan Corporation (now Arvin/Calspan Advanced Technology Center, Buffalo, NY) in 1987 under
contract to the U.S. Air Force and supported by NASA Dryden Flight Research Facility (DFRF). The
experiment, using the Air Force/Calspan NT-33 variable stability aircraft, investigated lateral handling
qualities issues such as stick feel-system dynamics, gradient, and sensing type (force or position),
combined with airframe roll mode time constant variations. Evaluation tasks included random (sum-of-
sines (SOS)) and discrete head-up display (HUD) tracking tasks, as well as air-to-air tracking and power
approach and landing. Experimental results were primarily in the form of pilot ratings. The experiment
and its results are presented in reference 1. One objective of the flight tests was to further investigate
the effects of time delays and feel-system delays on flying qualities, following the initial work of Smith
and Sarrafian (ref. 2).

The structure of the HUD tracking tasks provided the capability of measuring describing functions
across various elements in the pilot-vehicle loop; this is usually the primary motivation for using an
SOS compensatory tracking task (refs. 3, 4, and 5). Hence, the capability existed to use describing
functions to identify pilot—vehicle, open-loop dynamics as well as to verify the actual experimental
vehicle and stick dynamics. Open-loop, pilot-vehicle describing functions are presented in reference 1
for a few select cases.

A ground-based simulation, performed by Systems Technology, Inc. (Hawthorne, CA), under the
sponsorship of DFRF, was very similar in structure to the reference 1 experiment and was actually
designed to provide pre-experimental estimates for, and guidance to, the in-flight experiment (ref. 5).
As in the subsequent in-flight experiment (ref. 1), open-loop, pilot-vehicle describing functions were
obtained in this experiment, and provide an excellent basis for a ground-based and in-flight simulation
comparison of pilot behavior.

This report documents analysis conducted under sponsorship of PRC Inc. (Edwards, CA), of the
in-flight data results of reference 1 and the fixed-base simulation results of reference 5. Additional
experimental data have been obtained from two more recent flight programs that investigated the effects
of lateral control feel-system dynamics on helicopter handling qualities (refs. 6 and 7). Analysis of the
references 1 and 2 results consists of handling qualities ratings (HQRs, ref. 8) and pilot—vehicle open-
loop describing functions from the SOS tracking tasks. A limited amount of tracking data is available
from references 6 and 7, but the bulk of the data from these references consists of HQRs.



Scope of the Study

This study was undertaken to examine specific features of the flight data of reference 1. The primary
focus of the work was the extraction of open-loop, pilot-vehicle describing functions from the tracking
data, and, for a limited subset of these data, the development of pilot models. A second objective of
the study was the analysis of the HQRs from the flight experiment, in combination with other available
data, in an attempt to define the effects of variations in feel-system dynamics on handling qualities.

The limited funding for this effort precluded indepth analysis of either the pilot models or the
pilot ratings, and several unresolved issues remain. It has been possible, however, to get a grasp on
the effects of feel-system dynamics (for lateral control operations) on both handling qualities and pilot
dynamics. Several recommendations are made in this report for addressing feel-system effects in the
specification and determination of handling qualities, and possible future analytical and experimental
research subjects are identified to fill in the known gaps in the knowledge base.

Some of the findings reported here are not new and were, in fact, also reported in reference 1. The
augmentation of the feel-system database with references 6 and 7 has, however, allowed us to draw
observations and conclusions with much more certainty, and some new (and potentially controversial)
conclusions will be found in this report.

Organization of the Report

The next section of this report briefly reviews the database considered here, i.e., references 1, 2, 5,
6, and 7. Especially important is the selection of appropriate pilot-rating data from reference 1 based
on interpilot and intrapilot rating comparisons.

In “EFFECT OF FEEL-SYSTEM . ..” the research of Smith and Sarrafian (ref. 2) is revisited and
compared with similar selected data from the reference 1 flight tests. These data, along with related
cases from the fixed-base simulation (ref. 5) and helicopter flight research (refs. 6 and 7), are compared
to identify the proper method of dealing with feel-system dynamics variations. Discussed also is the
effect of force in relation to position (displacement) sensing, again using the relevant pilot rating data
from the references cited previously. The final subject of this section is the proper method for dealing
with the effects of feel-system dynamics in applying handling qualities requirements and criteria.

“DESIGN CONSIDERATIONS FOR FEEL SYSTEMS” looks at the physical characteristics of
cockpit manipulators in terms of their principal features, i.e., damping, gradient, and inertia. In this
section some recommendations are given for the practical design of control feel systems.

“ANALYSIS OF PILOT PERFORMANCE ...” presents pilot-vehicle describing functions and
pilot models for a selected set of the reference 1 flight data. These data show the effects of feel-system
frequency and command sensing on the open-loop pilot dynamics.

A summary of conclusions and recommendations, especially for future work that should be con-
ducted on the general subject of feel-system characteristics follows.



Supporting data generated under this contract are included as appendices. Appendix A summarizes
the methods employed in extracting the pilot, vehicle, and feel-system dynamics from the Calspan SOS
tracking time history data. Appendix B contains the actual time-histories and extracted pilot—vehicle
dynamics for all configurations analyzed in this study. The pilot modeling procedures and extracted
pilot models are detailed in Appendix C.

STATEMENT OF THE PROBLEM AND DATA

Governing Dynamics

History—While it has long been recognized that the dynamics of the cockpit feel system are
important to the pilot, the impact of such dynamics on the pilot’s perceptions of handling qualities is
not well understood. This question has evolved primarily in conjunction with the evolution of military
handling qualities requirements for fixed-wing aircraft, where advanced, highly augmented aircraft have
been forced to resort to equivalent aircraft forms for specification compliance. A logical question,
therefore, has been: what should be included in the aircraft model when these equivalent dynamics
are derived? More specifically, should the cockpit manipulator feel-system characteristics be included
or not?

The existence and application of equivalent aircraft approaches for handling qualities started with
military specification, MIL-F-8785C (ref. 9), which provided for the use of equivalent classical systems.
This specification did not, however, address the particular questions stated above.

The issue was faced in the writing of the proposed draft version of the new military standard and
handbook (ref. 10), where equivalent systems were explicitly given and required to be obtained in terms
of force control inputs. Discussions associated with this proposed document led to the conclusion by
the authors that this was the right answer.

Before the official release of the Air Force’s standard, MIL-STD-1797(USAF) (ref. 11), however,
the flight experiment reported in reference 2 was performed. These quantitative data, in combination
with experiences with force-sensing controllers on the X-29 and F-18, suggested that the impact of the
feel system on pilot opinion may have been overrated. Certainly this evidence at least raised questions,
sufficiently so that MIL-STD-1797(USAF) required the use of equivalent-system techniques referenced
to force and position inputs. The final tri-service document, MIL-STD-1797A (ref. 12), is unchanged
in this regard from the Air Force standard.

More recently, this controversy has resurfaced in the rotary-wing world, and the Army’s rotorcraft
specification (ref. 13)—currently a proposed tri-service standard (ref. 14)—states limits on bandwidth
response that, “It is desirable to meet ... for both controller force and position inputs.”

Mechanization—Feel systems are either position or force sensing (fig. 1). For position (or displace-
ment) sensing, figure 1(a), the reference point for handling-qualities measurements is very important: all
measurements in terms of position do not include the feel-system dynamics, while measurements from
force do. For force-sensing controllers, figure 1(b), the feel system is in parallel for force reference



and downstream of the position reference point, and therefore, is not included in either case—i.e., the
answer is the same for force-sensing systems.

The issue of what to do with the feel system revolves around philosophies of the pilot’s actions
in controlling the aircraft: does the pilot sense and respond to control displacements or forces? The
governing equation relating stick force, F', and position, z, is

F=Ii+bt+kz

where I is the stick inertia, b is the damping, and k is the spring gradient. Dividing by I, we see that
damping and frequency are given by

WUpswrg = b/I andwihg = k/I

or

Crs =b/VaIk,wps = \Vk/IT

In “DESIGN CONSIDERATIONS FOR FEEL SYSTEMS,” the characteristics of feel systems are
examined in terms of stick inertia, damping, and spring gradient; throughout the rest of this report the
stick dynamics are written in terms of damping ratio and natural frequency.

Data Used in this Report

This report makes use of the data from five references, including the initial study of Smith and
Sarrafian (ref. 2). The prime sources of data are the in-flight and ground simulation studies (refs. 1 and
5), supported by the helicopter flight experiments (refs. 6 and 7). Following is a brief review of the
salient features of each of these references, especially in terms of their applicability to this study.

Smith and Sarrafian—This AIAA article includes anecdotal information on the feel-system effects
on handling qualities for the X-29A and F/A-18 aircraft, description of an informal evaluation on the
USAF/Calspan NT-33A, and actual HQRs from a flight investigation with the Calspan in-flight simulator.
The pilot rating data were obtained from one pilot, on one flight. These data were consistent with the
anecdotal discussions, however, and suggested that the pilot was less sensitive to changes in the feel
system than to addition of an equivalent amount of transport delay. The conclusions are based on these
data and suggest that, “Better correlation with [MIL-F-8785C] time delay boundaries is obtained when
the time delay measurement is referenced to stick position, not force, and the feel system is therefore
excluded.” Feel systems evaluated were, however, reasonably good in terms of dynamics, with damping
ratios of 0.7 and natural frequencies of 26 and 13 rad/sec. A degraded feel system was not included.

Calspan Flight Tests—A portion of the reference 1 program was intended to gather more infor-
mation on the issues raised by Smith and Sarrafian. Unfortunately, as is shown in the data review
in “EFFECT OF FEEL-SYSTEM ...”, this portion was not sufficiently complete to fully resolve the
issues. The results of all of the reference 1 experiments, however—in conjunction with the other data
described in the following—do allow us to make some more definitive statements. The experiment
included feel systems at the frequencies evaluated in reference 2 (wpg = 26 and 13 rad/sec), and added
a degraded stick with wpg = 8 rad/sec.




Since this is the main focus of this report, some effort was devoted to comparing the pilot ratings
from the three subject pilots (denoted Pilots A, B, and C). Based on information in reference I, and
following an evaluation of the interpilot rating variations, all of the data for one pilot (Pilot B), and a
portion of the data for another (Pilot C), were dropped from this analysis, as described here.

Reference 1 includes an intrapilot rating comparison (pages 74 and 75) that shows reasonable
consistency between first-time and repeat evaluations for Pilots A and C. There is, however, a dis-
tinct difference in the HQRs from Pilot B between early and later runs—especially before and after
Flight 4153. There is no interpilot rating comparison, however, so it is difficult to assess the fidelity of
Pilot B’s ratings with the other two pilots.

In comparing HQRs between pilots, it is necessary to divide the data of reference 1 into three parts
based upon flight groupings as follows:

e Flights 4051-4057: These flights used a low-bandwidth sum-of-sines HUD tracking task, and
the ratings for these flights are generally better than for subsequent evaluations—except for Pilot A,
who appeared to be able to elicit potential handling qualities problems with the low-bandwidth task. In
addition, the up-and-away evaluations by Pilot B during these flights typically did not include formation
flying and air-to-air tracking tasks, and hence may be considered incomplete. For Pilots A and C in
the early flights these tasks generally drove the overall HQRs more than the HUD-referenced tasks.
Therefore, the ratings from Pilots B and C for this group, for the up-and-away evaluations, have been
ignored for the interpilot rating comparisons.

o Flights after 4057 and before 4153: These flights used the high-bandwidth sum-of-sines HUD
tracking task, but, as noted above, there is a difference in Pilot B’s assessments of handling qualities
for this set of flights when compared to the next set. This difference will become obvious when the
HQRs are reviewed.

e Flights 4153 and later: Pilot C did not participate in this series of flights at NASA, so all
ratings in this range come from Pilots A and B.

The interpilot rating comparisons for Pilot B as a function of Pilots A and C are plotted in figure 2.
Since every pilot flew repeats of some configurations, there are more data points on the plots than the
total number of evaluations. (Suppose, for example, that for a particular configuration Pilot A made
two evaluations and assigned HQRs of 2 and 3, and that for the same configuration Pilot B assigned
ratings of 4 and 5. For this configuration, there would be four points on the figure—Pilot A’s 2 and
Pilot B’s 4 and 5, and Pilot A’s 3 and Pilot B’s 4 and 5. For this example, even though each pilot flew
the configuration only twice, there would be four data points on fig. 2.)

On figure 2, open symbols denote those cases evaluated by Pilot B in flights prior to 4153, and
solid symbols are for cases evaluated by Pilot B in Flight 4153 and later. There is no similar distinction
for Pilots A and C; again, the intrapilot rating comparisons in reference 1 do not show any need for
such discrimination for these pilots. For the up-and-away (Flight Phase Category A) evaluations (top
portion of figure), there is a significant clustering of Pilot B’s ratings around HQR = 5: of the 28 solid
points on the comparison plot for Pilot A, 22 are within one point of 5 (i.e, 4, 5, or 6). There is no
evidence of a similar clustering of ratings by Pilot A.



The landing (Category C) rating comparisons (bottom plots on fig. 2) are even more dramatic:
Pilot B flew a number of configurations also evaluated by Pilots A and C, both before and after
Flight 4153 (including cases before Flight 4057; since the landing task was not significantly changed
throughout the program, all of the landing ratings may be used for comparisons). There is a clear
separation of Pilot B’s ratings: before Flight 4153 (open symbols), Pilot B always assigned HQRs of
2, 3, or 4; after Flight 4153 (solid symbols), the ratings were almost always 4, 5, 6, or 7, with only
an occasional better rating. Yet for the identical configurations, Pilots A and C assigned HQRs ranging
between 2 and 8. Basically, if the discrimination between flight segments were not made in the landing
data in figure 2, the plots would look like pure scatter with no correlation whatsoever.

This change in Pilot B’s rating behavior was noted in reference 1, with no discussion on any possible
reasons and with no impact on the data analysis. Based on figure 2, however, it seems reasonable to
remove Pilot B’s ratings from any analysis, since the cause for this rating change—as well as for the
relatively small spread in HQRs compared to Pilots A and C—is not known. It is important to emphasize
that there is no way of ascertaining that it is Pilot B who assigned the anomalous ratings; perhaps the
other two pilots were overly conscious of secondary factors that unduly influenced their assessments.
Without much more information, it is impossible to determine the full answer.

Interpilot rating comparisons between Pilots A and C are shown in figure 3. For the up-and-away
ratings, only Pilot C’s ratings for flights after 4057 have been plotted, as discussed above. There is a small
spread in pilot ratings for the up and away tasks in figure 3, but also very few data points. Generally,
for the landing Pilot C was much more critical than Pilot A (assigning higher HQRs for the same
configuration). This difference between the pilots will become evident when the rating data are plotted
against equivalent time delay, and it was noted in reference 1 as possibly resulting from differences in
piloting techniques for landing. Unfortunately, since the landing task is relatively unconstrained (when
compared with most of the up-and-away tasks), it is difficult to define quantitative measures that will
determine any differences in piloting technique. Quantitative analysis could be performed using the
time-history data for the landings, but such analysis was beyond the scope and funding of this study.
It is recommended that analysis of the time history data be performed, including measures of control
activity, peak roll rates, etc., to attempt to quantify any piloting differences for the landing task.

As an overall observation from figures 2 and 3, there is a high amount of scatter in the interpilot
ratings, much more than has been found in other similar NT-33A inflight experiments (e.g., refs. 15, 16,
and 17). This level of scatter would be reason to cast some doubt on the experimental results—except
that, for Pilots A and C, the intrapilot rating variation is quite small (ref. 1). Further, the difference
in opinion between these two pilots (fig. 3) happens to be one of the most intriguing results from the
experiment, as is shown later in this report.

In summary, the remainder of this report will not use pilot rating data from Pilot B, and will
use the following data: Pilot A—all data; Pilot C—all landing data; up-and-away data only for flights
after 4057.

STI Fixed-Base Simulation—A fixed-base simulation was conducted prior to the reference 1 flight
experiment to investigate similar dynamics. This simulation used two McFadden controllers, a sidestick
and a centerstick, with two subjects performing roll SOS tracking. The centerstick configurations were




designed to mimic the physical characteristics of the controllers evaluated in reference 1, including force—
deflection and control-response values. Besides HQRs, quantitative performance and tracking measures
and pilot-vehicle describing functions were obtained. The results of this fixed-base experiment are
directly comparable to a small subset of the reference 1 flight data.

NASA CH-47 Experiments—The NASA/Army CH-47B variable-stability helicopter was used to
investigate the effects of stick dynamics on helicopter flying qualities. The operation of a helicopter in
hover is quite different from control of a fixed-wing airplane, so the specific results from references 6
and 7 cannot be directly compared with those from reference 1; the overall trends, however, should be
similar since the task flown in the CH-47B consisted of SOS tracking. This study is especially valuable,
because many of the variations of reference 1 were also performed here, but with a larger number of
feel-system variations, including damping ratio. (Spring gradient was held fixed at 1 1b/in., as contrasted
with 4 Ib/in. for most of refs. 1 and 2.) Both force and position sensing were evaluated, and reference 6
contains HQRs as well as more quantitative tracking performance data. Additional information for this
report was provided by the first author of reference 6, Mr. Doug Watson of NASA Ames.

The overall value of these data is mitigated somewhat by the characteristics of the simulator: the
NASA/Army CH-47B (now back into operational service) was a large helicopter with limited capability
as far as attitudes, rates, and accelerations. The safety system of this helicopter precluded aggressive
maneuvering, so the SOS task was relatively benign when compared with the task used in either
reference 1 or 5 (as discussed in more detail below).

Canadian Institute for Aerospace Research Feel-System Study With a Bell 205A Helicopter—The
Canadian Institute for Aerospace Research conducted a feel-system study using their variable-stability
Bell 205A helicopter (ref. 7). As mentioned above, the specific results of this study cannot be directly
compared with the fixed-wing data from reference 1, but the data are useful nonetheless in identifying
trends. This study used the widest range of feel-system dynamics, including three values of damping
ratio, five different natural frequencies, and both displacement and fixed (isometric) sticks. In addition,
there is a wealth of HQR data, as two pilots flew eight different tasks (seven low-speed maneuvering
tasks plus SOS tracking). Unfortunately, the data are complicated by additional variations in stick gra-
dient, which was increased as feel-system frequency increased, while all of the other references used
a single spring gradient. In addition, like the CH-47B the 205A required a relatively low-bandwidth
forcing function so the SOS task was more benign than in either reference 1 or 5. Most of the low-
speed maneuvering tasks emphasized all axes of control, so the ratings for these tasks are not useful
for evaluating changes in roll feel-system properties. The results of the lateral sidestep task are of
value, however.

Of the two pilots in the reference 7 experiment, one pilot (Pilot A) tended to rate all of the
configurations better than the other (Pilot B). This is confirmed by the interpilot rating plot of figure 4
for the SOS and sidestep tasks. Reference 7 suggests that this rating difference was possibly due to
Pilot A’s considerably greater experience in helicopters—1400 hours (9800 total flight time) compared
to 125 hours (4450 total flight time) for Pilot B. It is noted in reference 7 that Pilot A’s ratings do not
show any consistent change as the feel-system dynamics were changed, while those for Pilot B reflect
the expected changes. In this report, the ratings for both pilots will be used, but emphasis is placed on
the ratings of Pilot B.



Comparison of Tasks and Performance Limits

Forcing Function Characteristics—Most of the data (HQRs and quantitative measures) analyzed in
this report were obtained from SOS tracking runs. Therefore, it is valuable to consider the characteristics
of the forcing function elements and the relative performance criteria used by the pilots in assigning
their ratings.

The SOS tracking task involves correction for displayed errors generated by a forcing function of

the form
F(t) =3 Ajsin(w; +¢)t

where the amplitudes A; and frequencies w; are adjusted to provide the desired task bandwidth and
amplitude. The amplitudes for the SOS tasks from references 1, 5, 6, and 7 are plotted (as relative
values, A;/A;) in figure 5. As figure 5 indicates, these experiments used similar forcing-function
bandwidths; the forcing functions for the references 6 and 7 experiments were, in fact, set based on the
reference 5 task.

Noted also on figure 5 are the input disturbance root mean square (rms) values for the four
experiments. The rms values for the Calspan study and the STI fixed-base study are almost identical
(19.0 compared to 18.6 deg), but those for the helicopter studies are much smaller at 4.4 deg. According
to reference 6, this reduced rms was “found to be the largest possible without nuisance control-system
disconnects by the research system safety monitoring equipment” on the CH-47B. Reference 7, which
mimicked the reference 6 experiment, used the same rms.

Performance Limits—Because of the random-appearing nature of the SOS task, it is impossible to
set an absolute limit on desired attitude error; for example, for an input rms of 19 deg, it is reasonable
to expect that a 3-o peak of 57 deg will occur occasionally, so a requirement to keep attitude within,
say, 20 deg is guaranteed to be violated. Instead, it is usual to set desired and adequate performance
limits based on ability to correct large errors and regulate attitude within a reasonable level.

The performance levels for the four SOS experiments were as follows:

e Calspan study (ref. 1): Desired—attitude maintained within 5 mils (approximately 8 deg bank
angle) 50 percent of the task, except immediately following step commands; Adequate—relaxed to
10 mils (16 deg).

e STI fixed-base simulation (ref. 5): Desired—Extended time periods of less than 1 to 2 deg roll
error and peak errors during reversals of less than 11 deg; Adequate—Short periods of 1 to 2 deg error
and peak errors on reversals of less than 22 deg.

e Helicopter experiments (refs. 6 and 7): For reference 6, “The pilots were instructed to mini-
mize the roll error at all times. Peak roll errors of 11 deg and 22 deg defined desired and adequate
performance .. ."” The performance limits are not given in reference 7 for that experiment, but since it
was based on the reference 6 study it is assumed the same limits were used.

While the limits on desired and adequate performance are comparable for the four studies, there is
a significant difference nonetheless. Although the Calspan and STI SOS tasks had similar rms values



(19 deg) and similar desired-performance limits (8 and 11 deg), the two helicopter studies—which used
much lower-rms forcing functions (4.4 deg)—kept the STI performance limit of 11 deg. Hence, it should
have been much easier for the pilots in the references 6 and 7 tasks to achieve desired performance (for
example, a 3-0 peak command, 13.2 deg, would barely exceed the desired limit), and therefore, one
might expect the HQRs to be better overall, and to show a more gradual degradation as the feel systems
are degraded. As the next section of this report indicates, this is precisely the case.

EFFECT OF FEEL-SYSTEM DYNAMICS ON HANDLING QUALITIES

Smith and Sarrafian Revisited

Initial Data—Several of the configurations evaluated in the initial study by Smith and Sarrafian
(ref. 2) were repeated on the NT-33 (ref. 1). In addition, the single evaluation pilot for reference 2 was
also Pilot A in the reference 1 experiment, and, therefore, a one-to-one comparison of ratings from these
two experiments is possible. The evaluation task in reference 2 was precision offset landing, identical
to the landing task flown in the reference 1 study.

The configurations evaluated in reference 2 were based on two feel-system frequencies, a fast
system at 26 rad/sec and a slow system at 13 rad/sec. The configuration identifiers and HQRs for
the six configurations (A through F) are listed in table 1. Listed also are similar configurations from
reference 1—or what the equivalent configurations would have been if similar cases were flown in
reference 1—along with the HQRs from Pilots A and C. Figure 6, reprinted from reference 1, shows
the identification method for the reference 1 configurations. All of the cases in table 1 have a medium
value of Tp (0.30 sec); a potentially very important difference between the two experiments, however,
is the selection of force-response sensitivity. In the Smith and Sarrafian flight tests, the lateral command
gain “was selected to provide satisfactory steady-state roll-rate response.” By contrast, in the Calspan
tests the response was always fixed at a predetermined value (reflected in the configuration identifiers
of table 1: the (5) and (10) indicate steady-state roll-rate per force, pss/Fys, of 5 and 10 deg/sec). It is
therefore possible—and in some cases highly likely—that the results of the reference 1 NT-33 tests are
heavily influenced by control sensitivity. More is said about this subject later in this report.

‘The most interesting comparisons from the Smith and Sarrafian study are cases A compared with B
and C compared with D. Figure 7 (leftmost plots) shows the pilot ratings from reference 2 as a function
of time delay for the feel system included (fig. 7(a)) and excluded (fig. 7(b)).

e Configurations A and B: Configuration B had the slow (13 rad/sec) feel system, resulting in
about 0.15 sec of time delay with the feel system included. Configuration A consisted of the fast
(26 rad/sec) system, with added time delay to produce an equivalent level of overall equivalent delay.
As figure 7 shows, there was no HQR difference between these cases, both of which were level 1 (HQR
of 2). Note that with the feel system removed (fig. 7(b)), the overall time delay for configuration A is
near the MIL-F-8785C (ref. 9) level 1 limit, yet this case was still considered good.

e Configurations C and D: These are the more interesting cases: Configuration C had the fast
feel system and a large added transport delay, resulting in 0.27 sec of total delay when the feel system
is included (0.22 sec without the feel system), while configuration D, with the slow feel system and a
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lower added delay, also had 0.27 sec including feel system, but only 0.17 sec without the feel system.
As figure 7(a) shows, there is a large discrepancy in HQRs between configurations C and D if the feel
system is included in overall time delay, while the trend is very smooth if the feel system is excluded
(fig. 7(b)). It was this comparison that led Smith and Sarrafian to suggest that the feel system should
not be considered a delay-causing element in the total aircraft.

Comparison Cases by the Same Pilot from Reference 1-—As mentioned above, the pilot for the
Smith and Sarrafian study was also Pilot A in the Calspan study of reference 1, so ratings for Pilot A
for the same configurations can be of value. Unfortunately, only three of the six reference 2 cases were
evaluated in the reference 1 tests, and even these may be clouded by the use of fixed control-response
sensitivity. Further, the two most interesting cases—C and D—were not reevaluated on the NT-33. To
augment this discussion, three configurations that were flow for reference 1 but not for reference 2 have
been added and assigned one-letter identifiers for simplicity, as listed on table 1: (1) Configuration E’—
labeled L201P(5) in reference 1, this case is similar to E from reference 2, except for the fixed sensitivity.
(2) Configuration G—L203P(10) from reference 1, with the slowest feel-system frequency (8 rad/sec)
to assess the effect of further reducing wrg below 13 rad/sec. (3) Configuration H—L.243P(10) from
reference 1, identical to L203P(10) except with an added first-order filter at 40 rad/sec (see fig. 6).

The ratings for Pilot A from the Calspan experiment are shown in the middle plots of figure 7.
Note that the configurations identified as A and B now have different HQRs: A received HQRs of 3, 3,
4, and B a single rating of 6. The result is a separation in these cases with feel-system dynamics both
included in (fig. 7(a)) and excluded from (fig. 7(b)) the overall time delay. Thus neither answer appears
to be right for these configurations.

Comparing the fast (configurations E and E’) and slow (G) feel systems, there is very little degra-
dation in HQR (2, 4, and 2; 4 and 4), supporting the exclusion of feel-system dynamics from time-delay
calculations. There is, however, a surprising degradation in HQR for the slowest system when the
40-rad/sec filter is added (4 and 4 for configuration G and 8 for H). This filter produces only about
0.023 sec of time delay, so it is doubtful that the entire difference in HQR is because of the filter alone.
Pilot comments do not help explain it either:

e Configuration G (L203P(10)): “Could feel some lateral displacement, as if the stick was a
bobweight in hand . . . Didn’t achieve desired performance on both PA’s, therefore overall a 4.” “Airplane
had some peculiar characteristics that I could notice flying around but not in the task ... You could get
the job done but I have some reservations.”

e Configuration H (L243P(10)): “Abrupt, too responsive initially. Not predictable ... Bursts of
PIO when closed loop . .. Controllable but barely.”

These ratings represent an enigma from the reference 1 flight experiment that cannot be fully
explained without more indepth analysis. The overall observation from figure 7, however, is that there
is an offset in HQRs for Pilot A when the feel system is included in time delay (center plot of fig. 7(a)),
just as there was for the reference 2 study (left plot). There is, however, a huge difference when the
feel system is excluded (fig. 7(b), center plot), where absolutely no correlation between time delay and
HQR exists, compared to the reference 2 study (left plot), where a very strong correlation was found. It
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appears that neither method is totally correct, but that excluding the feel system is more incorrect than
including it.

By contrast, the ratings of Pilot C for configurations A, B, E’, G, and H from reference 1 are shown
in the rightmost plots of figure 7. Pilot C’s ratings show exactly the opposite trend: there is a smooth
correlation between HQR and 7, with the feel system included (fig. 7(a)), with every configuration
correctly located in the MIL-F-8785C Level, and there is no correlation whatever when the feel system
1s neglected (fig. 7(b)). For Pilot C it appears that it is incorrect to exclude the feel system and correct
to include it—an observation counter to both of Pilot A’s sets of ratings.

Resolution of these enigmas will require analysis of the time-history data for all of the landings. It is
possible that simple measures of task performance—e.g., peak roll attitudes, rates, and accelerations, as
well as peak and rms stick activity—will reveal consistent differences between pilots (and experiments).
Such analysis was beyond the scope of this report, but may be the only way to determine the reasons
behind the conflicting data. It may further be necessary to repeat the entire experiment, but allow the
pilots to select their own control sensitivities.

Should Feel-System Dynamics Be Included in Equivalent Time Delay

The issue of whether feel-system dynamics for position-sensing control systems should be included
in computation of equivalent time delay was addressed in reference 2. This has significant implications in
applying the equivalent-system time-delay requirements of MIL-STD-1797A (ref. 12), and, in general, in
application of most traditional and recent handling qualities criteria. It is important, first, to recognize
that the force feel system on any cockpit manipulator is not simply a contributor to overall time
delay; what is not yet clearly understood is the impact of the dynamics of the feel system on handling
qualities, and what should be done (in terms of handling qualities requirements) to account for these
effects. Specifically, there are two questions to be addressed here: (1) does the force feel system,
whose dynamics are directly sensed by the pilot, affect the pilot’s perceptions of handling qualities; and
(2) are the effects of feel systems on the pilot’s perception of handling qualities adequately represented
by equivalent delay measurements alone. Unfortunately, the results of the reference 1 flight tests do
not serve to conclusively answer these questions, and indeed, several new questions are raised. This is
where the ground-based simulation data of reference 5, plus the helicopter tests of references 6 and 7,
will augment the database considerably.

Force in Relation to Position Reference—Figures 8 and 9 compare the HQRs from Pilots A and C
with equivalent-system time delay for the up-and-away (fig. 8) and landing (fig. 9) configurations. The
data have been sorted by Tp and by whether the time delay measurements are referenced to force or
position, meaning the feel-system dynamics have been treated as follows (discussed previously):

¢ Position-sensing controllers: Force reference—feel system included in computation of 7¢; Po-
sition reference—feel system excluded.

e Force-sensing controllers: Feel system excluded for both force and position reference.

Different symbols are used in figures 8 and 9 for the fast, medium, and slow feel-system dynamics;
open symbols are position-sensing and solid symbols are force-sensing cases.
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Based on the up-and-away ratings, it appears that it is more correct to reference the time-delay
measures to force, i.e., to include the feel-system dynamics for position-sensing systems (fig. 8). The
trends of degrading pilot opinion with increasing 7eq in figures 8(a), 8(c), and 8(e) are very strong;
both pilots show these trends, although the relations for the highest Ty case (0.40 sec) for Pilot A are
not quite as strong. (The two force-sensing cases for Pilot A with T = 0.15 sec and HQRs of 7 are
ratchet cases—these are discussed separately later in this section.) Certainly, comparison of parts (c)
with (d) and (e) with (f) of figure 8 suggests that it is much better to include feel-system dynamics in
the computation of equivalent time delay.

Things are not as clear for the landing configurations (fig. 9), where we see the interpilot differences
shown earlier in figure 7. Looking only at Pilot C’s ratings, there is a clear relationship between 7¢4 and
HQR in figure 9 when the feel system is included, and this relationship is lost almost entirely when the
feel-system dynamics are excluded. Pilot A, on the other hand, does not show as strong a trend, and in
fact commonly assigned level 1 or borderline level 2 ratings (HQRs of 2, 3, and 4) for configurations
with extremely large values of 7¢g—if feel-system dynamics are included. For the lowest T’z (0.20 sec)
and highest T (0.45 sec), Pilot A rated the force-sensing cases consistent with Pilot C, but gave all of
the position-sensing cases good HQRs; this was generally true for T = 0.30 as well, with only a few
exceptions. Therefore, as noted in the discussion of figure 7, for Pilot A it appears better to exclude the
feel-system dynamics, while for Pilot C the dynamics should be included.

Similar rating data from the reference 5 simulation are shown in figure 10. Equivalent-delay
numbers are not available for the configurations of reference 5; the time-delay measure plotted in
figure 10 is incremental added delay, because of both feel-system and command filters but excluding
the vehicle (Tg = 0.15 sec, actuator modeled by a 0.033-sec time delay). The feel-system and command
filter elements were all second-order, for which incremental time delay may be approximated by

AT = ES
Wn
In all cases the damping ratio was 0.6 or 0.7. As for figures 8 and 9, the time delay for position
reference (fig. 10(a)) excludes the feel system, and the delay for force reference (fig. 10(b)) includes
the feel system for the position-sensing cases. Both plots show some trends of degrading HQR with
increasing delay, but the trend for position-sensing controllers is stronger in figure 10(b), i.e., when the
feel system is included.

Similar trends are found from the SOS tracking experiment using the CH-47 helicopter (ref. 6).
Figure 11(a) shows the HQRs for both force and position sensing controllers vs. added time delay
because of command filters, i.e., feel system not included; while there is a relationship between HQR
and time delay, it is not strong, and ratings range between 2 and 4.5 for zero delay. When the feel
system is included, figure 11(b), the relationship is much more pronounced. (It is also noticeable that
the degradation in HQR with added delay is much lower in figure 11 than for the fixed-wing data of
figure 9; this is primarily because of the lower-amplitude SOS command and more relaxed performance
criteria, discussed previously.)

The results of the SOS tracking portion of the Bell 205A flight experiment (ref. 7) are even more
dramatic. For this experiment, the only delay-inducing element (besides the stick feel system) was
a first-order filter (break frequency of 8.66 rad/sec) that was added for some evaluations. (For data
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plotting, it has been assumed that the effective delay of this filter is Top = 1/8.66 = 115 msec. In
actuality, a low-order equivalent systems match to the aircraft model with this filter would reflect only
about 0.07-0.08 sec of added delay because of the filter.) When the HQRs are plotted against added
time delay with the feel system excluded, figure 12(a), there is absolutely no correlation. When the feel
system is added to delay for the position-sensing sticks, figure 12(b), there is a strong correlation, even
though the degradation of HQR with increasing delay is not strong.

The data of figures 8 through 12 do not answer the question of whether it is correct to represent
feel-system effects on pilot rating as a pure time delay; they do indicate, however, that the trend of pilot
opinion with delay is stronger when the feel system is included in the delay.

Effects of Force-Sensing Feel Systems—The foregoing discussion assumed the conventional meth-
od for addressing feel systems in computing time delay (fig. 1): either exclude them or include them
for position sensing (feel system in series), and always exclude them for force sensing (where the feel
system is in parallel, and therefore, is not picked up in either force or position referencing). There is,
however, an interesting feature of the HQRs for the force-sensing controllers in figures 9, 10, 11, and 12
(solid symbols). In all cases, there can be a wide spread of ratings for a single value of delay. This is
because the feel-system dynamics are varying widely, but since these dynamics were not included in the
computation of delay, their impact is not reflected. Therefore, it is useful to make one more computation:
include the effective delay caused by the feel system for all sensing types—position and force. This
is a departure from tradition, and does not follow the convention as described for figure 1. But it is
based on an observation from the NT-33 and CH-47 experiments (refs. 1 and 6) and an assumption:
the data show that the pilots were sensitive to changes in feel-system frequency even for force sensing
controllers, and therefore it may be assumed that the effect of the feel system on pilot opinion is the
same regardless of the mechanization of the stick.

The landing data from the NT-33 experiment of reference 1 serve as a good starting point for
evaluating this hypothesis. In figure 13, the ratings for Pilots A and C from figure 9 have been
condensed for the T = 0.20 and 0.30 sec configurations into single plots. The equivalent-delay values
for position-sensing configurations (open symbols) are identical to those of figures 9(a) and 9(c); for the
force-sensing configurations (solid symbols); however, the points in figure 13 also reflect the equivalent
delay caused by the feel system. Several major observations can be made by comparing figures 13(a)
and 9(a), and figures 13(b) and 9(c):

e Inclusion of the feel system in 7, has improved the overall trends of HQR with delay; e.g., the
bad feel system (natural frequency of 8 rad/sec) received poor ratings whether position or force sensing
was used (triangles in fig. 9, double flags in fig. 13), and the ratings for force sensing have been shifted
to the right in figure 13.

e There is a better relative concordance between the ratings for the position-sensing and force-
sensing data, i.e., the trends are similar in figure 13.

o The ratings are generally better than expected based on the requirements of MIL-F-8785C.

e There is a cluster of ratings from Pilot A that are much better than other configurations with
similar time delay. These are the ratings at HQR = 3 to 4 and 7 = 210-230 msec; they are the enigmatic
points discussed previously (fig. 7), and they will be analyzed in more detail in the following.
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Figure 14 shows the data from the reference 5 fixed-base simulation with the feel system included
for both controller sensing types; compared with figure 10(b), however, the trends in figure 14 are not
nearly as good, as there appears to be a definite shift in the ratings at any value of time delay. In fact, it
appears from these data that it is better to exclude the feel system for force-sensing controllers, i.e., that
figure 10(b) is correct. (As will be seen shortly, this is the only set of data for which this observation
can be made. The reasons for this are not known at this time, but may reflect the differences between
fixed-based simulation and full-motion simulation.)

The two helicopter experiments strongly support the inclusion of feel-system effects for force-
sensing controllers. The HQR data for these experiments are shown in figure 15. For the CH-47 study
of reference 6, the force-reference plot (fig. 11(b)) shows a group of ratings for force-sensing controllers
with HQRs between 2 and 5, but at a constant value of time delay. In figure 15(a), the effect of adding
the feel system to overall time delay is to more evenly distribute these ratings with the position-sensing
points. The same effect is found for the Bell 205A study of reference 7 (compare fig. 12(b) with
fig. 15(b)), with the exception of one configuration that received ratings of 5 from Pilot A and 7 from
Pilot B. This was the highest-frequency case evaluated in the reference 7 study, and it is possible that
the combination of fixed stick and lack of feel-system filtering of pilot inputs made it possible for the
pilots to excite other response modes on the subject helicopter. Nothing is mentioned in reference 7
about this, but it is also feasible that a phenomenon similar to roll ratchet may have occurred with this
controller.

With the exceptions of the fixed-base simulation data of reference 5, and the single configuration
from reference 7, this analysis of the pilot rating data suggests that it is most appropriate to always
include the feel-system dynamics in computing time delay, regardless of the reference used in the
mechanization of the feel system itself.

It is important to reiterate that this does not mean that the effect of the feel system on the pilot
is identical to the effect of adding a pure time delay; indeed, the manifestation of poor feel-system
dynamics is distinctly different from that of large time delay. Rather, the foregoing shows that, in the
absence of more concrete, specific requirements on feel-system characteristics, it is possible at least to
estimate the effects of the feel system on pilot ratings by considering it to be akin to adding a time
delay. In other words, the conservative approach in handling-qualities evaluations is to include the feel
system as a delay-inducing element in the equivalent aircraft.

Analysis of the Enigmatic Ratings from Pilot A—Despite the previous analysis, there remains a set
of ratings by Pilot A in reference 1 that defies explanation. This set, highlighted in figure 13(b), occurred
in the landing evaluations, and generally corroborates Pilot A’s earlier ratings of reference 2 (fig. 7).
The ratings are considered enigmatic because Pilot A was internally consistent between configurations
as well as experiments, yet Pilot A’s ratings differed from those of Pilot C and from Pilot A’s own
evaluations in the up-and-away tasks of reference 1.

This difference in ratings is illustrated in figure 16. The configurations plotted in figure 16 are those
for both the up-and-away and landing evaluations with an overall time delay (feel system included) of
approximately 210 msec and the medium value of T for each task. Since the total delay is the same,
the primary difference between these configurations is the source of the delay; HQRs are plotted in
figure 16 against incremental added delay.
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For the up-and-away data, figure 16(a), the total delay was achieved by use of the slowest feel
system (resulting in no added delay), configuration 203P(18); the intermediate feel system with a
26-rad/sec second-order command filter, 212P(18); and the fastest feel system with a 13-rad/sec second-
order command filter (221P(18)) and with 110-msec of added delay (201P(18) + 110). Pilot C flew
only one configuration, but the three ratings (7, 8, and 10) are in agreement with Pilot A’s single rating
for that configuration (7). Pilot A flew all of the configurations and gave basically the same HQRs for
all of them. Thus Pilot A’s up-and-away evaluations concur with the MIL-F-8785C requirements on
equivalent time delay (fig. 8(c), cluster of ratings at 7¢q = 0.21 sec), and suggest that the source of the
delay—sluggish feel system, intermediate feel with a command filter, or fast feel with either command
filter or added delay—makes no difference whatsoever on pilot ratings. Again, it must be noted that
Pilot A’s opinion—i.e., comments—shows great disparity between configurations; for example, the
slow-feel aircraft has unacceptable ratchet-like oscillations, not at all similar to the effects of high pure
time delay. Nevertheless, figure 16(a) indicates that the effect on Pilot A’s ratings is identical when
characterized by equivalent time delay.

The ratings for landing, figure 16(b), show an entirely different story. The configurations plotted
here are the enigmatic HQRs for Pilot A (fig. 13(b)). The variations in added dynamics are similar to
those for the up-and-away data, and again the equivalent time delay (feel system included) is around
210 msec for all cases. The ratings for Pilot A clearly show that, for position-sensing sticks, the initial
delay due to the feel system should be ignored entirely: Pilot A’s ratings correlate very well with
added delay alone. The single rating for the force-sensing stick suggests further that there may even
be some beneficial effect from force sensing, since this configuration has 135 msec of added delay but
still received an HQR of 4. The ratings for Pilot C, however, are in total opposition and instead look
more like Pilot A’s up-and-away ratings of figure 16(a); there is very little variation in HQR across the
configurations. Unfortunately, Pilot C did not fly two of the cases with 53-55 msec of added delay, but
based on figure 16(b), there is no reason to suspect that Pilot C’s ratings for these two cases would have
been any different.

The data shown in figure 16 remain a mystery, and there may be no way to explain them without
a detailed analysis of the landing time histories for Pilots A and C. Based solely on Pilot A’s landing
ratings, it would seem appropriate to recommend that the feel system be excluded from estimates of
handling qualities criteria.

Pilot A’s good ratings in the bad time-delay region of figure 13(b) represent the worst possible
scenario for handling qualities criteria. There are three possibilities for correlation of HQRs with
criteria: (1) Handling qualities ratings (or at least levels) and criteria levels agree. This is clearly the
ideal situation. (2) Bad ratings lie in the good region. This may indicate a failure of the criteria or
it may only indicate other, unrelated problems. (3) Good ratings lie in the bad region. This indicates
either a failure of the criteria or a failure of the original experiment to expose the handling qualities
deficiencies under study. Pilot A’s enigmatic ratings fit this category with respect to equivalent time
delay (fig. 13(b)), and, while they must be considered valid, there is sufficient other evidence (Pilot C’s
landing ratings and both pilots’ ratings for up-and-away flight) to support the use of the time-delay
requirement as recommended here.
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Effects of Force and Position Sensing on Pilot Ratings

In the previous subsection, the effects of force and position sensing were evaluated with respect to
equivalent time delay. In this subsection, the incremental effects on HQRs of the two mechanizations
will be addressed. References 1, 5, and 6 all investigated this issue using identical feel-system dynamics
for both position and force sensing.

All of the relevant HQRs from these three references are shown in figure 17. The reference 1 data
include both up-and-away and landing configurations; where the same pilot flew both mechanizations,
there is a general trend for slightly better ratings when force sensing is employed. In most instances,
the HQR difference is one pilot rating or less, and hence is not significant; there are two cases where
the improvement is greater, and for the final configurations (L342P(10) and L342F(10)), the ratings
actually degrade slightly for force sensing. The fixed-base simulation data of reference 5 show the
greatest improvement in HQRs in figure 17: in every case, force sensing received better ratings from
at least one of the two pilots, and in most cases the improvement is more than one HQR. The CH-47
flight data from reference 6, also shown in figure 17, has no real difference between position-sensing
and force-sensing controllers. This lack of HQR difference from the helicopter SOS tracking task is
interesting, because there was a distinct difference in roll error reduction, as shown in figure 18. The
errors with force sensing are consistently lower than those for position (displacement) sensing.

Based on the data in figure 17, it appears that there may be some beneficial effect on handling
qualities from using force rather than position for control commands. Nevertheless, it is clear that a bad
feel system (e.g., the wpg = 8 rad/sec stick in the reference 1 experiment) is still bad, whether position
or force sensing is used, and therefore the dynamics of the feel system cannot be totally ignored just
because commands are based on control force. For this reason, the conservative approach taken above
is considered to be appropriate, i.e., assume the effect of the feel system on handling qualities is the
same regardless of the command pickoff used.

Location of Lags

Included in the experiments of references 1, 5, and 6 was an assessment of the importance of the
location of second-order lags. Specifically, the studies all looked at whether a lag in the command path
was equivalent to the lag due to the feel system. The evaluations involved swapping of second-order
lags between the stick and the command filter, as sketched in figure 19. Figure 19 also shows all
relevant rating data from the three references.

For the reference 1 study, there is simply not enough data to make any observations; only two
comparisons were conducted, and only Pilot A flew all of the configurations. For the up-and-away
comparison (221P(18) and 212P(18)), there is no difference in Pilot A’s ratings between the 26-rad/sec
stick with a 13-rad/sec filter, and the 13-rad/sec stick with a 26-rad/sec filter. The landing comparison
for Pilot A (L221P(10) and L212P(10)) reflects one of the enigmatic ratings discussed above. In the
fixed-base simulation of reference 5, two comparisons were conducted with basically no change in
HQRs. The CH-47 experiment of reference 6 shows no consistent difference. The largest changes in
HQR for the CH-47 data in figure 19 are for the low-frequency, low-damped mode ((pg = 0.3, wpg =
5.4 rad/sec). HQRs degrade by one-half to one point when this mode is placed in the feel system instead
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of the command filter. For the mode with similar frequency but higher damping ((pg = 0.6, wpg =
4.9 rad/sec), however, the ratings actually improve slightly when this mode is in the feel system.

Overall, based on figure 19 it appears that there is very little effect on pilot ratings because of the
location of second-order lags, and that a bad stick with minimal command filtering is about as bad as
a good stick with lots of command filtering.

Roll Ratchet

Roll ratchet was observed in the reference 1 flight program, as it was in the earlier lateral high-order
systems (LATHOS) experiment (ref. 17) that generated much of the discussion of this phenomenon in
the first place. There are several theories on the origin of roll ratchet, most of them conflicting, and
there is no way to fully resolve the issue of roll ratchet without further analysis of the reference 1 data
and, possibly, even further testing. A ground simulation study (ref. 4) found a tendency for human
pilot neuromuscular peaking around the ratchet frequency for certain combinations of aircraft and feel-
system dynamics. This tendency was found to exist in the describing-function data from the reference
I flight experiment as well, as discussed in a later section of this report. In this section, it is possible
to identify some of the contributors to roll ratchet, and hence to define what it takes to alleviate ratchet
tendencies. Fortunately, several configurations from reference 1, in combination with the “classic” roll-
ratchet source, the LATHOS study (ref. 17), and data from a much older NT-33 experiment (ref. 18),
clearly illustrate why roll ratchet occurs on the NT-33 in the first place.

When ratcheting was encountered in the LATHOS experiment, several key elements of the aircraft
dynamic system were identified as contributors: a low value of roll mode time constant, T, (or high
1/T'g), high control sensitivity (in terms of roll rate per unit stick force), and the use of force-sensing
rather than position-sensing commands.

One configuration and its variants from reference 1 helps us see in great detail some of the specific
factors involved. The pilot ratings for these variants were included on figure 8(a) (solid circles at
Teg = 0.063 sec) and are repeated on figure 20(a). Configuration 141F(18), with force sensing, fast feel
system, and high response sensitivity (pss/Fas = 18 deg/sec/lb), was given an HQR of 7 by Pilot A and
described as “head knocking . . . ratcheting” (extracted pilot comments are given in table 2). Pilot C (in
an early evaluation, i.e., with a low-bandwidth SOS forcing function) gave it a 4 and called it “jerky.”
This configuration is identical to Case 5-2 in LATHOS, which also received solid 7’s for ride qualities,
but 4’s for performance.

Reduction in the control-response sensitivity from pgs/Fps = 18 to 10 deg/sec/lb did not improve
the HQRs much (configuration 141F(10)), still a 7 from Pilot A and a 3 from Pilot C. There is no
reference to ratcheting, however (table 2)—only to unacceptable lateral accelerations and abruptness by
Pilot A (curiously, Pilot C mentions “sluggishness”). The reduction in sensitivity therefore appears to
have reduced the ratchet tendency, if not the excessive accelerations.

A further, dramatic improvement was made simply by changing the stick force—deflection gearing
from 4 to 2.75 1b/in. for configuration 141F(10). This case was flown twice by Pilot A and received
HQRs of 2 and 3; it was “a good, well-rounded airplane” (table 2). Without changing the feel-system
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dynamics, the roll mode time constant, or the mechanization of force-sensing commands, what was an
overly abrupt HQR = 7 airplane is now almost perfect. The decrease in control sensitivity, in terms of
roll rate per unit stick deflection, is dramatic: from 72 deg/sec/in., to 40, and finally, 25 (fig. 20(a)).
A less dramatic but similar improvement in HQRs was found for a landing configuration (shown in
figure 20(b)). This configuration had reasonably good handling qualities to begin with, so the changes
were not as extreme.

There is strong evidence from reference 18 that the single greatest contributor to ratchet, and
the cause of recommendations to avoid short roll mode time constants (e.g., ref. 17), was the use of
extremely high levels of roll control sensitivity on the LATHOS program. In the LATHOS study, as
in reference 1, fixed values of sensitivity were evaluated (in contrast with other Calspan programs,
e.g., references 15, 16, and 18, where the pilots were allowed to select their sensitivities); for the
short roll mode, T = 0.15 sec, sensitivities, measured in terms of pgs/Fgs, were fixed at 10 and
18 deg/sec/lb. In addition, linear stick command gradients were used with no force breakouts. (Level 3
by the requirements of MIL-STD-1797A) and with stick force-to-deflection gearing of 4 1b/in.

A very similar configuration was evaluated in reference 18, with Tp = 0.155 sec, but with
position sensing, approximately 1.5-1b stick breakouts, 3.81 Ib/in. gearing, and with pilot-selectable
control/response sensitivities. For the best systems, the optimum sensitivity was around Lg,s =
162 — 207 deg/sec?/in., corresponding to pss/Fas = 6.6-8.4 deg/sec/lb. The very best system (con-
figuration BA-2 with no aileron yaw), was rated a 2 (on the old CAL scale), and had the highest value.
Unfortunately, the pilot comments for this case are missing. For the next best system, PR = 2-1/2,
pss/Fas = 7.4 deg/sec/lb and the pilot noted that “I would like a higher gear ratio and lighter stick
forces but I compromised because the response is too abrupt for rapid inputs with higher gear ratios.”
This comment, with others, hints at the verge of ratcheting—prevented in every case by selecting a
response sensitivity below the lowest value flown in either reference 1 or LATHOS. Even LATHOS
evaluations with nonlinear control gearings indicate an improvement in handling qualities with this
small fix (ref. 19). HQRs improved from 7 to 4-4.5 with only a slight hitch in the control gradient,
corresponding to breakout and desensitization around neutral stick.

The data discussed above suggest that ratcheting can be easily avoided by taking several steps:
(1) Keep the control-response sensitivity below about 8 deg/sec/lb, (2) use some nonlinearity in the
control gradient, and (3) keep the control force—deflection gearing at a reasonable setting, somewhere
below 4 1b/in. (2.75 lb/in., after all, may not be the best setting). These data also suggest that any criteria
that place lower limits on Tpg, such as the effective roll-mode requirements developed in reference
17 (e.g., fig. 21), are not preventing the problem (excessive sensitivity), but merely preventing the
manifestation of it (high roll damping).

DESIGN CONSIDERATIONS FOR FEEL SYSTEMS

Inertia and Gradient Characteristics
In the previous sections of this report, the dynamics of the stick feel system have been addressed

in terms of the effective damping and frequency characteristics, i.e., (rg and wpg as defined in the
statement of the problem. In this section, the characteristics are examined in terms of the three design
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parameters: I, the stick inertia (or mass, in slugs or lbm); b, the stick damping, (Ib-sec/in.), and k, the
stick gradient (Ib/in.).

The acceptability of stick feel-system dynamics is clearly influenced by all of these parameters. For
example, the flight experiments of reference 7—as well as experiences with the F-16 sidestick—have
demonstrated that very stiff sticks are perfectly acceptable as long as their effective natural frequency is
sufficiently high. By contrast, it is common for helicopters to be operated with force-feel removed en-
tirely, corresponding to zero natural frequency. The importance of two of the three design parameters—
gradient and inertia—can be examined together by using only those data from references 1, 5, 6, and 7
that have reasonable damping.

Figure 22 is a crossplot of effective inertia, I, and stick natural frequency, shown as l/w%s = I/k.
(This figure is based on the authors’ oral presentation of ref. 6.) Summary data from references 1, 5, 6,
and 7 are shown on this crossplot. These data represent, in every case, the best possible dynamics (in
terms of HQR) for the given combination of stick characteristics. For the two experiments where stick
damping was a variable (i.e., refs. 6 and 7), the HQRs given are for the moderately and highly damped
sticks only. Included also are the stick dynamics (triangles) for several helicopters and V/STOLs (the
UH-60A, CH-47B, and YAV-8B) from reference 6, and for the X-29A from reference 2. Of these
aircraft, only the CH-47B has a feel system that is not considered good by the pilots. The higher
gradients (greater than about 2 Ib/in.) are typical of centersticks in fixed-wing airplanes, while the lower
gradients (below 2 1b/in.) are more commonly found in rotorcraft.

In figure 22, the open symbols correspond to level 1 HQRs and the half-filled points correspond to
level 2 HQRs. Based on this figure, a level 1 minimum on stick natural frequency may be set at about
10 rad/sec for effective inertias above about 5 Ibm. Below S5 lbm, the limited data suggest that stick
frequency is no longer important; there are, however, very few data points in the region of low inertia
and low frequency, since this requires an extremely low value of gradient (less than about 0.5 lb/in.).
This figure also shows that the cure for a stick with low natural frequency is either to greatly reduce
the gradient—possibly producing, for fixed-wing applications at least, a stick with much too little force
feedback to the pilot—or to increase the gradient, thereby increasing the natural frequency without
changing the inertia.

More work is clearly required before the design guidelines of figure 22 can be adopted into a
specification. For example, the region of acceptable gradients is probably higher for fixed-wing airplanes
than for helicopters, so there may be separate level 1 and level 2 regions for these different aircraft
types. The vast majority of the data on figure 22 is from the helicopter experiments; much more testing
(and data gathering from operational aircraft) is necessary for fixed-wings.

Damping Characteristics

The final variable in stick design is damping, b (or, equivalently, (rg). The helicopter studies of
references 6 and 7 evaluated variations in damping; the pilot ratings from these variations are shown in
figure 23 on a plot of damping ratio and natural frequency. It is important to note that for the reference 7
data, stick gradient is also varying (as a function of natural frequency), while for the reference 6 data
the gradient was fixed at 1 1b/in.
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Figure 23 confirms the lower limit on natural frequency from figure 22; there are very few data
points with a combination of low damping and high natural frequency, so it is difficult to set a definite
limit on damping. Based on the limited data, however, a potential lower limit may be recommended at

Crps = 0.3.

ANALYSIS OF PILOT PERFORMANCE DATA FROM NT-33 FLIGHT TESTS

Overview

The sum-of-sines HUD tracking task used in the NT-33 flight test evaluations (ref. 1), in addition
to being a well constrained closed-loop evaluation task, enabled the measurement of specific pilot
performance parameters. The most interesting of these pilot performance measurements are open-loop,
pilot-vehicle describing functions that directly quantify pildt behavior as an integral linear element of
the pilot—vehicle control loop. Pilot opinion, in particular, and pilot behavior, in general, may be better
understood through careful interpretation of these describing functions.

Because of their potential for yielding valuable information on pilot behavior in-flight, the extraction
of open-loop, pilot—vehicle (YpYc) describing functions from the run time history data and a limited
pilot model-based analysis of these were integral parts of this research effort. Emphasis was placed on
extracting as many describing functions as allowed by the budget on this contract. Analysis of these
YpYe describing functions using pilot models was limited in scope due to budgetary constraints.

A listing of the flight-test runs and configurations for which describing functions were obtained is
presented in table 3. The runs shown in table 3 were chosen on the basis of the pilot opinion study
presented previously in this report, and the runs provide a means for logically assessing the effect of
flight test parameter variations on pilot performance. Evaluation runs by Pilot A were chosen whenever
possible to minimize the effect of interpilot variations in performance. The emphasis on Pilot A was
based primarily on this pilot’s evaluation of a broader cross section of experimental configurations than
the other pilots in the experiment.

In addition to open-loop, pilot-vehicle describing functions, describing functions for the feel system
(Yrg) and controlled element (Y¢) dynamics were also extracted from the run time history data. These
additional describing functions provided a means of verifying the actual tested controlled element and
feel-system dynamics. The methods used to transmit and analyze the experimental time history data are
presented in Appendix A. Time histories and describing functions for the open-loop, pilot—vehicle sys-
tem, feel-system, and controlled element dynamics for all the runs evaluated in this effort are presented
in Appendix B.

The pilot model analysis, by nature a time consuming and sometimes iterative procedure, was
limited in scope by budgetary constraints. This analysis was confined to a brief investigation on in-
flight feel-system—human pilot interactions, designed specifically to complement the pilot opinion study
undertaken previously in this report. Following a brief introduction to the pilot modeling procedure and
the derived pilot models, this section will continue to address some issues of interest in feel-system—
human pilot interactions.
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Transfer Function Models of the Pilot—Vehicle System

The pilot model analysis was directed toward obtaining a better understanding of pilot and feel-
system interactions, especially their effect on the human pilot neuromuscular mode, observed during the
reference 1 flight-test evaluations. A matrix of configurations evaluated using pilot models, together with
pilot identifiers and ratings, is shown in figure 24. The configurations shown in fi gure 24 encompassed
only roll time constant, feel-system frequency, and command sensing (force and position) variations
with all other parameters fixed except for a few confi gurations that incorporated a 40-rad/sec command
filter (see ref. 1). This command filter is well outside the frequency region of piloted control and had
no significant effect on pilot performance.

A subject of particular interest from previous studies (refs. 2, 5, and 20, for example) and therefore
of primary focus here is the effect of feel-system frequency on pilot performance with position and
force sensing. Specifically, it was hoped that this analysis would shed some light on the question
of whether the feel-system lag is altered by the pilot by loop closures around the stick itself. There
are two current schools of thought on this issue: (1) The feel system is not altered by the pilot,
and therefore it should be noticeable in the open-loop describing function essentially unchanged, as
suggested in reference 5; and (2) This lag is compensated by internal pilot loop closures and its adverse
effects mitigated, as suggested in references 2 and 20. The basis for such an analysis, however, was
compromised because of crucial gaps in the test matrix (fig. 24). There was a particular dearth of data
for configurations employing the slow feel system and force sensing, where only two runs exist, and one
(configuration 343F(18)) was unusable because of a discontinuity in tracking the SOS disturbance signal
(Appendix B).

Despite the shortcomings in the test matrix, the configurations in figure 24 were analyzed in an effort
to glean as much information as possible out of the pilot-vehicle describing functions. Details of the
pilot modeling procedure, including the assumed pilot models, are outlined in Appendix C. The model—
data correspondence can also be assessed through model and describing function data comparisons
shown in Appendix C.

The general form of the pilot model used to fit the describing function data is shown in figure 25. In
addition to a gain, first-order lead, and time delay, allowance is made in the pilot model for two second-
order modes corresponding to the limb-manipulator and possible modified feel-system dynamics. The
specific origins of these modes were not investi gated because of time and budgetary constraints. A sin gle
second-order mode (referred to here as the limb-manipulator mode), together with the pilot lead, time
delay, and gain terms, was sufficient in most cases for satisfactorily matching the describing function
data (ie., generally provided the best match, either in terms of a mismatch value, or qualitatively,
or both).

A matrix of the derived Y, Y, transfer function models, corresponding to the matrix of configurations
(fig. 24), is shown in figure 26. The transfer functions are separated into the controlled element (Y;)
and pilot (Yp) dynamics. The controlled element dynamics in figure 26 are measured values from the
describing function data, not the design values reported in reference 1. In most cases, the Y, differed by
that given in reference 1 by a pure time delay. In one case (configuration 143F(18)), an extra second-
order mode was required to correctly match the describing function data for Y.. The first-order lead
term in the pilot models generally lies near the aircraft roll mode (1/T'R), suggesting the pilots equalized
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the roll dynamics. One second-order mode adequately models the limb-manipulator dynamics in all
cases except one (configuration 203P(18), with position sensing, Tg = 0.25 sec, and slow feel system),
where an additional second-order mode was required for the best fit. The feel-system dynamics do not
appear explicitly in any of the YpYc models, suggesting that they are modified by loop closures internal
to the human pilot.

The effects of the feel-system dynamics seem to be embodied in the limb—manipulator mode. This
mode accounts for the amplitude ratio peaks seen in most of the describing functions and dominates
the higher frequency dynamics of YpYe. Analysis of the effects of feel-system dynamics and type of
sensing used in the control system is, therefore, concentrated on this mode.

Pilot models were also obtained using the open-loop, pilot-vehicle describing functions for four
configurations (configurations Aj, By, C3, and F,) from the similarly structured fixed-base experiment
in reference 5. These models were dynamically similar to those evaluated in the reference 1 experiment;
they are equivalent to the fast and intermediate feel-system configurations with the low Tg in reference 1
(fig. 24). The resulting pilot models and controlled elements are shown in figure 27. These data enabled

a limited evaluation of pilot behavior in the fixed-base and flight environments.

Effect of Feel-System Frequency on YpYe

Position Sensing—The effect of feel-system frequency on the overall pilot—vehicle system was
assessed for the intermediate and high Tg configurations using stick position sensing and the models
from the describing function data for Pilot A. The locations of the limb—manipulator modes (from
fig. 26) for all the configurations analyzed (including those for comparable configurations from the
ref. 5 fixed-base simulation) are shown on a complex-plane plot (real and imaginary) in figure 28.
Shown also in figure 28 are the open-loop, feel-system dynamics from the reference 1 experiment. For
most of the configurations, the frequency and damping of this limb—manipulator mode are comparable to
those observed in the fixed-base simulation of reference 5. This mode is also in the region of observed
roll ratchet (e.g., ref. 4).

For the position-sensing configurations, figure 28 shows a consistent shift of the limb-manipulator
mode to a lower frequency when the slow feel system is included in the configuration. The frequency
response comparisons, figures 29 and 30, show that this shift in the limb—manipulator mode to a lower
frequency causes additional phase lag at higher frequency (around 10 rad/sec) that is approximately
equivalent to the difference in the feel-system phase lags when taken independently. Hence, though the
feel-system dynamics are not explicitly present in the YpY, model, their effects seem o be incorporated
into the limb—manipulator mode, and thereby affect the open-loop, pilot—vehicle dynamics.

The damping of the limb—manipulator mode is low (fig. 26), and relatively minor variations in the
damping ratio cause dramatic differences in the amplitude ratio peaking tendency of the Y, Y, frequency
response (figs. 29 and 30). This peaking is the most probable reason for roll ratchet encountered in this
experiment, and will be discussed later.

The additional phase lag caused by the slower feel-system dynamics is evident (figs. 29 and 30)
in the higher frequency open-loop, pilot-vehicle wransfer characteristics. There is little difference in
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the Y,Y; phase curve in the region of crossover for the different configurations. The added phase lag
and associated steeper roll-off of the phase curve at frequencies higher than the crossover frequency
will cause the closed-loop performance of the pilot-vehicle system for the slow-feel-system case to be
particularly sensitive to pilot gain. Such adverse changes in closed-loop performance, with pilot gain
variations that are inevitable during the course of a run, can be expected to degrade pilot opinion.

Based on this limited evidence, the inclusion of the feel-system equivalent time delay in time
delay computations for handling qualities evaluation purposes seems to be justified when stick position
sensing is employed. The actual delay in the open-loop, pilot-vehicle system is not directly related
to the open-loop, feel-system dynamic lag; but the change in characteristics of the limb-manipulator
mode with feel-system characteristics seems to have a roughly equivalent effect on the open-loop,
Y, Ye system.

Results for the two equivalent position sensing runs from the fixed-base experiment (ref. 5) are
very similar: the limb-manipulator mode migrates to a considerably lower frequency with the equivalent
intermediate feel system when compared with the fast feel system (diamond symbols on fig. 28).

Force Sensing—An equivalent comparative evaluation was performed for the force-sensing config-
urations. Unfortunately, as stated earlier, this evaluation was compromised by the lack of experimental
data for force-sensing configurations (fig. 24). The primary comparisons that can be made, at the low
and high values of Tp, are shown in figures 31 and 32.

Comparison of the configurations for the high T (fig. 31) is complicated by inter-pilot differences.
The fast and slow feel-system configurations were evaluated by Pilot B, while the intermediate feel-
system configuration was evaluated by Pilot A. The YpY: dynamics for Pilot A differs considerably
from those for Pilot B (fig. 31). Interpilot differences such as this merit some investigation, but were
not possible in this limited analysis. It is, however, an interesting subject for further study, as there are
several configurations that have been evaluated by more than one pilot.

The difference between the Y,Y,’s for the fast and intermediate feel systems at the high Tz (both
Pilot A), shown in figure 32, is minor. The frequencies of the limb—manipulator modes for these two
configurations are similar (fig. 26). Comparison of the YpYc’s for the fast and slow feel systems (both
Pilot B) for the low T configurations in fi gure 31 shows a greater phase slope (roll off) at frequencies
immediately higher than the —180 deg frequency for the slow feel system. This greater degree of phase
roll off is primarily because of the movement of the limb-manipulator mode to a lower frequency for the
slow feel system (see fig. 26). The ability to draw any definitive conclusion about the effect, when force
sensing is employed, of the feel-system lags on pilot performance is clouded because both evaluations
in figure 31 were made by Pilot B, whose ratings show greater variability when compared with the other
pilots (discussed previously), and also because the controlled element, as evidenced by the describing
function, was considerably different from that reported for that configuration (see Appendix B).

The YpY for the slow feel-system configuration in figure 31 (also see transfer function in fig. 26)
points to the possibility that even though force sensing is employed (theoretically excluding the feel-
system dynamics from the loop), the limb-manipulator mode can be adversely affected by slow feel-
system dynamics. This effect, caused by the movement of the limb-manipulator mode to a lower
frequency with the slow feel system, appears to cause a phase lag in the open-loop, pilot—vehicle
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system roughly equivalent to that which could be anticipated when position sensing is employed. This
effect is possibly caused by the encroachment of the feel-system dynamics on the Crossover frequency
for the task, near the human pilot neuromuscular dynamics. Further evidence for this hypothesis is the
relative indifference of the YpY¢’s in figure 32, where the intermediate and fast feel systems—both at
frequencies considerably greater than either the crossover frequency or the pilot’s neuromuscular system
frequencies—have little effect on the overall open-loop, pilot-vehicle dynamics.

Results from the two equivalent force sensing runs from the reference 5 fixed-base experiment also
show the limb-manipulator mode moving to a lower frequency with the lower frequency (intermediate)
feel-system. The mode is not observable for the fast feel-system configuration (fig. 27), and is probably
at a greater frequency than that covered by the describing functions.

Effect of Force and Position Sensing on YpYc

It has been generally recognized (e.g., refs. 5 and 6) that the primary advantage of force sensing
over position sensing is the absence of the feel-system dynamics in the forward loop. This results in less
phase lag in the overall pilot-vehicle loop and, therefore, better closed-loop performance when force
sensing is used (ref. 5).

Comparisons of the Y,Y, models for force as a function of position sensing for the high Tg config-
urations are shown in figures 33 and 34 for the fast and intermediate feel systems, respectively. Added
phase lag is observed at frequencies immediately above crossover for the position sensing configurations
in both cases. This added phase lag is caused by the lower frequency of the limb—manipulator mode
when position sensing is employed (see fig. 26). The movement of the limb—manipulator mode with
changes in the feel-system dynamics has a similar effect, in a limited frequency region of Y,Ye, to that
of the added feel-system dynamics. The effect of this added phase lag on pilot performance and opinion
is minimal, because of the relatively high-frequency dynamics of the fast and intermediate feel systems
that do not seem to encroach on the neuromuscular dynamics or region of piloted control.

Roll Ratchet

The results of the fixed-base experiment reported in reference 4, using a limited displacement, force
sensing stick, suggested that the roll ratchet phenomenon is a closed-loop interaction of the pilot’s neuro-
muscular system with the airframe and manipulator dynamics. Specifically, ratchet tendency was linked
to the peaking of the limb-manipulator mode. The flight-test data from reference 1, where roll ratchet
was experienced with several configurations (see discussion at the end of section entitled “EFFECTS
OF FEEL-SYSTEM DYNAMICS ...”), provides an excellent basis to validate this hypothesis.

A review of the pilot comments for the sum-of-sines HUD tracking task (ref. 1) for all the runs
listed in table 2 enabled the majority of those runs to be divided into three groups: (1) Those where
roll ratchet is specifically mentioned in the pilot comments, (2) those where mention is made of a PIO,
incipient PIO, or probable PIO, and (3) those that received level 1 pilot ratings with no comments
related to PIO or ratchet. The actual Y,Y¢ describing function data (as opposed to the models for these
data, as in previous plots) for the three groups are shown in figures 35, 36, and 37, respectively. Shown
also in figures 35 through 37 are amplitude ratio and phase curves drawn through the approximate mean



amplitude ratio and phase values at each frequency. An important factor is that all the runs in figure 35
(ratchet cases) are by Pilot A, while those in figure 36 (PIO cases) are primarily by pilots B and C with
only one run by Pilot A (see table 2). The amplitude ratio peaking is clearly greater for the runs where
roll ratchet was encountered during the SOS tracking task (fig. 35) when compared with that for runs
where no ratchet or PIO was encountered (fig. 37). The greatest differences in the describing functions
between runs are in the PIO or probable PIO runs of figure 36. Some of these describing functions
have the characteristics of the ratchet describing functions in figure 35, while the rest are similar to the
no-PIO, no-ratchet runs in figure 37. These differences in figure 36 may be attributed to differences in
pilot interpretation of ratchet and PIO.

Selected 20-sec segments of the stick force time histories for the ratchet configurations of figure 35
are shown in figure 38. The approximate frequencies of the ratchet are also shown in figure 38.
The approximate ratchet frequencies correspond to the frequencies of the amplitude ratio peaks in
figure 35. Note, in particular, that the higher frequency oscillation (when compared with the other
ratchet cases) for configuration 201P(18) + 55 (approximately 12.6 rad/sec) in figure 38 corresponds to
the higher frequency amplitude ratio peak seen in figure 35. This correlation between the frequency of
the amplitude ratio peaking in YpY, and the closed-loop ratchet frequency provides strong evidence that
the limb-manipulator mode is a primary cause of the roll ratchet observed in this experiment.

None of the describing functions for the ratchet runs in figure 35 show a limiting stability condition,
1.e., zero gain and phase margin, which would indicate the presence of a continuous closed-loop limit
cycle. As mentioned in reference 1, roll ratchet is a time-varying, nonstationary phenomenon that would
be expected to be related to pilot gain and compensation variations during the course of the run. The
describing function assumes consistent (stationary) pilot dynamics, and is a measurement of the mean or
average pilot behavior throughout the run. As a result, subtle variations in pilot gain and compensation
during the course of the run, that could be sufficient to cause ratchet for a time, would not be seen
in the averaged pilot behavior over the whole run. Episodes of ratchet in the course of the run would
be short in duration, as the pilot would immediately change his control strategy upon encountering
ratchet to minimize its effects. Analysis of specific sections of a run to define the variations in pilot
behavior throughout the course of the run would shed further light on this subject but was beyond
the scope of this study. The significant amplitude ratio peaking caused by the limb-manipulator mode
comes through strongly in the describing functions for the ratchet cases, and indicates that this was
consistent throughout the run. This, in turn, indicates that there was little the pilot could do to modify
this characteristic for these cases.

Fixed-Base and Flight-Data Comparison

Four configurations from the similarly structured fixed-base experiment have directly comparable
counterparts in the flight-test experiments of reference 1. These are the low TR, fast and intermediate
feel-system configurations with force and position sensing (configurations Aj, B;, Cy, and F5 - ref. 5).
There is only a minor difference in the frequencies of the intermediate feel systems (14 rad/sec in ref. 5
and 13 rad/sec in ref. 1). The bandwidths and rms magnitude of the SOS disturbance signals were
similar in these two experiments (see the statement of problem). Of the directly comparable flight-
test configurations (ref. 1), only two, the fast and intermediate feel systems with force sensing, were
evaluated (configurations 141F(18) and 142F(18), fig. 24).

26



The YpY. describing functions for the fast and intermediate feel system, low Ty, force-sensing
configurations from the flight tests are compared with their fixed-base counterparts in figures 39 and 40.
The primary difference between the fixed-base and flight data is the higher crossover frequency achieved
in the fixed-base experiment. There is also considerably less amplitude ratio peaking and associated
phase lag in the fixed-base data.

The greater peaking of the limb-manipulator mode in the flight tests is probably due to the in-
teraction of the aircraft motion with the limb-manipulator dynamics. The higher gains (and therefore
crossover frequency) seen in the fixed-base data are most likely caused by the lower phase margins
that could be tolerated on the fixed-base simulation where, as a result of the lack of motion cues, an
impending instability is sometimes difficult to distinguish. Overall, the pilots exhibit broadly similar
behavior in flight and on the fixed-base simulator for the few cases evaluated here.

CONCLUSIONS AND RECOMMENDATIONS

Effects of Feel-System Dynamics on Handling Qualities

This limited study has reviewed the results of the Calspan flight tests of reference 1, along with
other recent feel-system experiments, in an attempt to define the fundamental effects of feel-system
dynamic characteristics on handling qualities. Analysis of basic handling qualities ratings (HQRs) and
more involved investigation of pilot-vehicle describing-function factors have revealed several important
conclusions about the importance of feel systems. Unfortunately, several very large gaps also exist in
the database, resulting in areas where more questions have been raised in this study.

Based on the analysis of pilot rating data, the following conclusions can be drawn:

e Only a limited number of cases from the original work by Smith and Sarrafian (ref. 2), involving
offset landings with a position-sensing controller, were reevaluated in reference 1. Based on the few
cases that were reevaluated and that were flown by the same pilot in both experiments, it appears that
the results are more or less consistent, i.e., that the HQRs correlate better with overall time delay if
the feel system is not included in the computation of that delay. For a second pilot in the reference 1
experiment, the results are exactly the opposite.

e Reference 1 included a stick with a feel-system frequency well below the two frequencies
evaluated in the initial reference 2 study. For both pilots in the reference 1 experiment flying the offset
landing task, this feel system had a decidedly degrading effect on their HQRs—an effect that is better
represented by equivalent time delay if the feel-system dynamics are included in that delay.

e For up-and-away tasks in reference 1, the HQRs for the two pilots were consistent and generally
correlate with equivalent time delay resulting from inclusion of the feel system.

o The HQRs from Pilot A, for offset landings in both the reference 2 flight and the reference 1
NT-33 study, remain an enigma that are not explainable without further analysis of the maneuver data.
Pilot A’s opinions were clearly consistent across two airplanes and several different configurations, yet
these rating trends differ considerably from those of Pilot C in the reference 1 study, from Pilot A’s own
ratings in the up-and-away evaluations, and from the equivalent-time-delay criteria.
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e In general, the best correlation with the time-delay requirements was found when the feel-
system dynamics were included in the delay measurement regardless of the command reference. This is
a radical departure from past approaches, which have been twofold: (1) Don’t include the feel system
at all (i.e., reference all time-delay computations to control position only, and since the feel system is
in parallel for a force-sensing controller, it is not picked up in the measurement), and (2) Include the
feel system only for position-command systems (i.e., reference all time-delay computations to control
force, and since the feel system is upstream of the force pickoff for force-sensing controllers, it is not
included). In the past, concerns about whether to include or exclude the feel system in evaluations
against various handling qualities criteria have been minimized by two major factors: (1) Feel-system
dynamics are usually fixed for all evaluations in a particular experiment, and so have a constant effect;
and (2) The feel systems for most experiments have typically been very good, with moderate damping
and high natural frequencies, so their overall contributions have been minor.

e The effect of feel-system dynamics on pilot opinion are not equivalent to just adding pure time
delay; the characteristics of a sluggish feel system bear no resemblance to high time delay. The overall
effect on pilot ratings, however, is reasonably similar to that caused by an equivalent amount of time
delay, and a large value of equivalent delay is a sign of handling qualities problems—but not a sign of
the source of those problems.

e The overall effect on pilot opinion of slow feel systems is different for force-sensing than
for position-sensing systems. As a result, there are some signs of pilot preference for force-sensing
controllers as long as the overall dynamics are acceptable. As a first cut, however, it may be assumed that
the effect on handling qualities of the feel system for force-sensing controllers is adequately described
by including the dynamics of the controllers in the computation of equivalent time delay.

e The location of second-order lags in the total aircraft system is relatively unimportant in terms of
HQRs. That is, switching two second-order filters between the stick and a command element downstream
of the stick produces relatively little change in pilot ratings. The data for operation with a very slow stick,
however, are limited to the helicopter study of reference 6 and should be repeated on the Calspan NT-33.
(In the identification system of reference 1, this would consist of configuration 213F(K) compared with
231F(K) and 213P(K) compared with 231P(K’), where it is recommended that the command sensitivity,
K, be selected by the pilot.)

* Roll ratchet on the NT-33 is directly related to the use of excessive roll command-response
sensitivities (in terms of deg/sec/Ib) with highly responsive airplane dynamics. The study of reference 1
used fixed sensitivities for up-and-away evaluations of 10 and 18 deg/sec/lb; in a past study where the
pilots were allowed to select their sensitivities (ref. 18), a much lower value was chosen for a similar
highly responsive configuration and level 1 HQRs were assigned. Many of the problems attributable to
high roll inverse time constant may, in fact, be due much more to the high response sensitivity.

Design Configurations
Based on the data analyzed in this report, an acceptable feel system is attainable as long as the

effective stick natural frequency is above 10 rad/sec, or the effective mass is less than 5 Ibm, with a
stick damping ratio above 0.3. More detailed design guidelines require much more experimental data.
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Assessment of Human-Operator Dynamics

An attempt was made in this study to research in depth the fundamental characteristics of the
human pilot to explore such issues as command sensing (force as a function of position) and feel-
system frequency effects. Unfortunately, this was not entirely possible with the reference 1 data. First,
several important combinations of sensing, stick frequency, and airplane dynamics were not evaluated
at all (e.g., position sensing with the highest roll mode inverse time constant and force sensing with the
intermediate inverse time constant). Second, in some cases, even where a comparison is possible, it is
not for the same pilot, thus introducing an additional variable. And third, the use of a low-bandwidth
forcing function for the sum-of-sines command in the early flights means that these data cannot be
compared with the later flights. The following conclusions and observations are based on the limited
data that could be extracted from the reference 1 flights.

e Extraction of describing functions from the sum-of-sines tracking task was feasible, and rea-
sonably good data were obtained. It was possible to get not only pilot—vehicle describing functions
but also describing functions to verify the aircraft and feel-system dynamics. This technique should be
actively pursued in future flight testing as a method to ensure that the desired configuration has been
evaluated.

e Most of the describing functions exhibit a low- to moderately-damped peak in the frequency
response, corresponding to the expected limb-manipulator mode seen in fixed-base simulations (e.g.,
refs. 4 and 5). The frequency of this mode, based on pilot modeling matches to the describing-function
data, is generally around 12 rad/sec for the fast and intermediate stick frequencies, reducing to about
8-10 rad/sec for the slowest stick (the 8-rad/sec stick). The best pilot models were obtained when
only this one second-order mode was included in the model, thus implying that this mode is indeed a
modified stick-arm-neuromuscular mode.

e The reduction in frequency of the limb-manipulator mode for the slowest feel system was
observed with both force and position sensing. This reduction in frequency causes added phase lag
in the open-loop, pilot-vehicle system that is detrimental to pilot performance and opinion, and is
equivalent to the added phase lag of the slow feel system. This suggests that even though the feel
system is theoretically a parallel element when force sensing is employed, its dynamics still affect
the open-loop, pilot-vehicle dynamics through variations in the frequency and damping of the limb-
manipulator mode. This observation is based on the data for only one run for the slow feel system with
force sensing; more data are required to enable a definitive conclusion to be drawn.

e When position sensing is used, the added feel-system lag appears in the open-loop, pilot—vehicle
through variations in the pilot limb-manipulator mode dynamics. The added lags are not the same as
but are equivalent to adding the open-loop feel system to the open-loop, pilot—vehicle system.

e For the few cases where a force and position sensing comparison was possible, there was a
consistent reduction in the frequency of the limb-manipulator mode with corresponding added phase lag
at lower frequency with position sensing. This effect was minor for the cases that could be compared,
and had no significant effect on pilot opinion.

e The describing functions for runs in which roll ratchet was noted by the pilots showed sig-
nificantly greater peaking at the limb—manipulator mode frequency, when compared with those where
no ratchet was noted. The frequency of these peaks corresponded approximately to the frequency of

29



the closed-loop ratchet observed in the time histories. This provides strong flight evidence that roll
ratchet is caused by interactions between the pilot’s neuromuscular system and the aircraft-feel-system
dynamics, a hypothesis previously constructed based on fixed-base experimental data.

e Comparison of open-loop, pilot-vehicle describing functions for the flight data with those for

the similarly structured fixed-base experiment was possible for only two cases (fast and intermediate
feel systems). These showed that greater crossover frequencies were achieved in the fixed-base ex-
periment. There was also greater peaking with added phase lag in the flight-test data caused by the
limb-manipulator mode.

10.

11.
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APPENDIX A
TRANSFER OF TIME HISTORIES AND EXTRACTION OF DESCRIBING
FUNCTIONS FROM CALSPAN DATA

Data Transcription and Reduction

The raw experimental time-history data from the relevant flights of reference A-1 was loaded
onto the mainframe computer (the ELXSI) at NASA DFRF by NASA personnel. The data could be
read, inspected, and rewritten in whole or in part via the THPLOT and GETDATA (ref. A-2) software
available on the ELXSI. Access to the ELXSI was obtained via phone modem through an account
setup for STI use. A PC version of GETDATA and THPLOT, also provided to STI by Mr. Richard E.
Maine of NASA, proved to be of great value in transcribing the data to a format compatible with STI's
frequency domain analysis software.

Following is a brief summary of the procedure for extracting and transmitting the appropriate run-
time history data to a PC at STI. Run-time histories were available for a whole flight (consisting of
several runs) with 28 signals stored at a 100-Hz sample rate.

1. Use GETDATA on ELXSI to create a binary file of a total flight record at a very low sample
rate (1 per second).

2. Transmit this file to a PC at STI using KERMIT data transmission protocol.

3. Examine this file using the PC version of THPLOT, and determine approximate start and end
times of runs required for analysis.

4. Use GETDATA on ELXSI to create binary files of the required run time histories (ascertained
in (3) above) with the appropriate signals. As a 100-Hz sample rate is a greater accuracy than that
required for this analysis, these files were decimated to have an equivalent sample rate of 20 Hz.

5. Transmit these files to a PC at STI, and convert from binary to ASCII using the PC version of
GETDATA.

Following conversion to ASCII, these files were read into STI’s frequency domain analysis software
(ref. A-3), which generated describing functions of various components within the control loop using
an advanced fast Fourier transform algorithm.

Example Configuration

An evaluation from Flight 4069 was chosen to illustrate the data extraction methods. Evaluation 3
of Flight 4069 (configuration 141F(10), Pilot A) was selected because of the availability of the open-loop
pilot-vehicle describing function from Calspan’s analysis of this run in reference A-1.

The compensatory HUD tracking task loop structure is shown in figure A-1, where Y}, represents
the pilot dynamics and Y, represents the controlled element. Shown also in figure A-1 is a list of the
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signals brought down to STI for analysis. Figure A-2 shows the controlled elements for the configuration
being considered.

Time histories of some signals for the SOS tracking run in Flight 4069-3 are shown in figure A-3.
The data are continuous with no disruptions or undue noise. The power spectrum of the SOS disturbance
input (PHIC) is shown in figure A-4. The 13 sine wave components (shown circled in fig. A-4) of the
disturbance input are clearly seen above the residual noise and closely correspond in frequency and
shape (bandwidth) to that reported in reference A-1.

The signal-to-noise ratio of the roll rate signal (P) was much better than that of roll attitude (PHI),
so open-loop pilot-vehicle (YpYe, fig. A-1) describing functions were extracted using roll rate (i.e.,
P/PHIE was obtained). Amplitude ratio and phase corrections for a pure integrator were then applied to
give the PHI/PHIE describing functions used in this report. The describing function for configuration
141F(10) evaluated at the 13 sine-wave component frequencies is shown in figure A-5 (circles). Shown
also in figure A-5 are the equivalent describing function points from reference A-1 (squares). The
good agreement between the measured and published describing functions seen in figure A-5 increases
confidence in the data transmission and analysis procedure.

There is a slight difference in the frequencies of the 13 sine-wave components obtained from this
analysis and those extracted from reference A-1 (fig. A-5). The exact frequencies of the sine-wave
components used in the reference A-1 experiment are not published and the frequencies shown in
figure A-5 are approximate values extracted from a figure in reference A-1. The sine-wave component
frequencies obtained through careful analysis of the disturbance signal PHIC (see fig. A-4) are slightly
different from those extracted from reference A-1, but are used throughout this report because of the
greater confidence that could be placed in them following the evidence in figure A-4.

Using the time-history data, it is possible to verify that the feel-system dynamics and aircraft dy-
namics were correctly implemented. The describing function for the stick dynamics shown in figure A-6
agrees very closely with the published stick dynamics for configuration 141F(10) (fig. A-2), shown in
figure A-6 as solid lines. The describing function for the controlled element (roll rate-stick force) shown
in figure A-7, however, differs from the published controlled element dynamics (fig. A-2), shown by
solid lines in figure A-7. A simple, nonoptimized model fit to the controlled element describing function
data, shown in figure A-8, shows that the actual model had a roll time constant of approximately 0.1 sec
and an overall time delay of approximately 80 msec, as opposed to the reference A-1 values of 0.15 sec
and 40 msec, respectively.
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APPENDIX B
COMPILATION OF RUN TIME HISTORIES AND DESCRIBING FUNCTIONS

This appendix contains the run-time histories and extracted describing functions for all the experi-
mental runs analyzed in this research effort. All the runs analyzed were for the SOS tracking task from
the NT-33 flight test experiment (ref. 1). A list of the runs analyzed is provided in table 2 of the main
text. Methods of data transmission and describing function extraction are explained in Appendix A.

The data are presented by run sequence. For each run, the data presented consist of 1) experimental
time histories, 2) describing function for the controlled element (Y,), 3) describing function for the feel
system (Yzg), and 4) describing function for the open-loop pilot-vehicle (YY)

The experimental time-history data have an equivalent sample rate of 20 Hz (see Appendix A). The
signals shown on the time history plots are stick position (DAS, in units of in.), stick force (FAS, 1b),
roll rate (P, deg/sec), roll attitude tracking error (PHIE, deg), and roll sum-of-sines disturbance command
(PHIC, deg). The describing functions for the controlled element are roll rate (P, deg/sec) referenced
to either stick force (FAS, 1b) or stick position (DAS, in.), as appropriate. Describing functions for
the feel-system dynamics are stick position (DAS, in.) referenced to stick force (FAS, 1b). Describing
functions for YpY, are roll attitude (PHI, deg) referenced to roll error (PHIE, deg).

Transfer function model responses for Y. and Ygzg are shown superimposed on the describing
functions plots. The transfer functions are also displayed. Transfer functions are shown in shorthand
notation, as follows,

(a) =(s+a)

¢ w] = (32 + 2ws + wz)

with time delays represented by second-order Padé approximations. In most cases, these transfer func-
tions for Y. are the same as those presented in reference 1. In a few cases, the transfer functions have
been slightly modified (considerably in the case of run 4154-5) from those presented in reference 1 to
better reflect the controlled element dynamics as indicated by the describing functions.
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APPENDIX C
PILOT MODELS

A pilot modeling analysis was performed on a selected subset of the open-loop pilot-vehicle (YpYc)
describing functions presented in Appendix B and on a few YpY, describing functions from the fixed-
base simulation discussed in the main text. A brief description of the modeling process is presented in
this appendix together with model-data comparison plots.

The closed-loop pilot-vehicle system was assumed to be of the form shown in figure C-1. The
pilot was represented by a dynamic element consisting of a lead-lag, pure gain, pure time delay, and
a second-order neuromuscular mode. Open-loop Y,Y; transfer function models were matched to the
describing function data using STI-developed optimization software (Program MFP). All the dynamic
elements attributed to the pilot were allowed to vary in the optimizing procedure. An additional unknown
element was the feel-system dynamics, that, for the case of position sensing, could appear in the pilot—
vehicle model in one of three forms: 1) unchanged (i.e., fixed at the experimental value), 2) modified
by loop closures internal to the pilot’s neuromuscular system to a new value of damping and frequency,
or 3) nonexistent (i.e., the arm and manipulator are effectively a single dynamic element, with the
second-order neuromuscular mode in the pilot model representing a combined limb-manipulator mode).
These variances represent different points of view on the subject of pilot-feel-system interactions, as
discussed in the main text of the report.

Based on these three hypotheses, three forms of transfer-function models were matched to each
describing function: 1) feel-system dynamics fixed, 2) feel-system dynamics free, and 3) no feel-system
dynamics at all. It was unnecessary in most cases to go through the procedure for all three models,
as the results for one would make obvious the possibilities of success using the others. The best fit in
terms of mismatch, and visual inspection, was chosen as the representative YpY. model. The highest
frequency describing function data point (amplitude ratio and phase) was omitted from consideration in
the optimization procedure. This highest frequency data point is adversely affected by noise because of
the low input power at that frequency (see input power spectrum in Appendix A). The lowest frequency
data point is also adversely affected by noise because of the low power (typically) of the tracking error
signal; so, this point is also omitted from the analysis for a few cases.

As stated in the main text of this report, the single limb-manipulator mode pilot model proved
to be the best model, in terms of model—data correlation, for all cases considered. The extracted pilot
models for the flight-test and fixed-base data are presented in the main text of this report. Model-data
correlations of YpY, for the flight-test cases are presented in figures C-2 through C-12, and those for
the fixed-base cases are presented in figures C-13 through C-16.
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Figure 27. Open-Loop Pilot/Vehicle Transfer Function Models
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Figure A-1. HUD Tracking Task
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Table C-1. Comparison cases from Smith and Sarrafian (ref. 2) and NASA

Landing approach.

CR-179445 (ref.

SMITH & SARRAFIAN

NASA CR-179445

WEFS CONFE. HQR(A) CONFE. HQR(A) HQR(C)

26 A 2 L201P(10)+55 433 5

13 B 2 L202P(10) 6 5,6,3
26 C 1.1 L201P(10)+175 -NF- -NF-
13 D 44 L202P(10)+110 -NF- -NF-
26 E 2,2 L201P(10) 4,2 —

13 F 4 L202P(10)+110 -NF- -NF-
26 E’ -NF- L201P(5) 2 2

8 G -NF- L203P(10) 4.4 7

8 H -NF- 1.243P(10) 8 7

NOTE: NF = Not Flown

1) —
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Table C-2. Extracted pilot comments for control-response and controller force-displacement variations.

Configuration Pilot HQR Comments
141F(18) (Fys/bas = A 7 Abrupt initial response . . . ride qualities are not
4.0 1b/in.) good . .. Initial reponse was really head knock-

ing ... Small amplitude wing rock, ratcheting.

C 4 Jerky ... Initial response is quick and annoyin g.
141F(10) (Fys/bas = A 7 Got desired performance but lateral accelera-
4.0 1b/in.) tions were unacceptable and require improve-

ment ...extremely sensitive, abrupt airplane.
[PIO tendency?] Not in roll attitude ... Try to
smooth it down.

C 3 Still feels sluggish but dynamics are smooth
...Seemed like a long time constant. Not
an abrupt response. Predictability was good
... Sluggishness noted for quick tasks.

141F(10) (Fys/6as = A 2 A good, well-rounded airplane. [Roll sensitiv-
2.75 1b/in.) ity?] About right. When you wanted the re-
sponse you could get it and it was predictable.

A 3 In air-to-air, when I first took it, I thought it
was going to be a “ratchet” airplane again, but
there was something about it that made it quick
and precise ...I noticed the stick motions on
occasion. It was not objectionable.
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Table C-3. List of analyzed runs.

Tr WFS HQR HQR Flight
Configuration (sec) (rad/sec) P/F (SOS) (over-all) pPilot™  evaluation
241P(18) 0.25 26 P 7 7 A 4069.2
141F(10) 0.15 26 F 7 7 A 4069.3
143P(18) 0.15 8 P 8 8 A 4069.4
343F(18) 0.40 8 F 3 3 B 4079.3
341P(18) 0.40 26 P 5 5 C 4126.1
212P(18) 0.25 13 P 8 8 C 4127.1
143F(18) 0.15 8 F 7 7 B 4154.5
301P(18) 0.40 26 P 3 3 A 4156.1
302P(18)+55 0.40 13 P 7 7 A 4156.3
303P(18) 0.40 8 P 5 5 A 4156.4
141F(18) 0.15 26 F 6 6 B 4159.4
301P(18)+55 0.40 26 P 4 3 A 4160.3
141F(10) 0.15 26 F 2 2 A 4160.4
301P(18)+110 0.40 26 P 7 7 A 4161.1
201P(18)+55 0.25 26 P 7 7 A 4161.3
201P(18)+110 0.25 26 P 6 6 A 4161.5
221P(18) 0.25 26 P 7 7 A 4176.1
341F(18) 0.40 26 F 2 2 A 4176.3
142F(18) 0.15 13 F 5 3 A 4160.5
342P(18) 0.40 13 P 2 2 A 4069.1
212P(18) 0.25 13 P 7 7 C 4126.3
342F(18) 0.40 13 F 2 2 C 4127.3
202P(18) 0.25 13 P 5 5 A 4156.2
203P(18) 0.25 8 P 6 6 A 4160.2
302P(18) 0.40 13 P 2 2 A 4161.2
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